Search results

Search for "electric double layer" in Full Text gives 17 result(s) in Beilstein Journal of Nanotechnology.

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • the application status and further potential of MEG devices are discussed in this review. It is expected that this review may provide valuable knowledge for future MEG research. Keywords: electric double layer; energy; moist-electric generators; nanoarchitectonics; Review 1 Introduction The use of
  • occurs when a liquid is in contact with a solid with a surface charge. This interaction is mainly dominated by the electric double layer (EDL), which consists of a layer of ions (Stern layer) that is tightly adsorbed to the charged surface and a layer of counter ions (diffusion layer) that is attracted
PDF
Album
Review
Published 25 Oct 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Uniform arrays of gold nanoelectrodes with tuneable recess depth

  • Elena O. Gordeeva,
  • Ilya V. Roslyakov,
  • Alexey P. Leontiev,
  • Alexey A. Klimenko and
  • Kirill S. Napolskii

Beilstein J. Nanotechnol. 2021, 12, 957–964, doi:10.3762/bjnano.12.72

Graphical Abstract
  • electrodes with a small radius (usually less than 50 nm), which is comparable or less than the thickness of the electric double layer [1][2]. The main advantages of such systems include high mass-transfer rates under steady-state diffusion, diminished electric double layer capacitance, and short response
  • current density is associated with the charging of the electric double layer, a decrease in the concentration of electroactive species near the electrode surface, and an increase in the diffusion layer thickness. Stage II corresponds to the growth of Cu segments inside the AAO at near constant current
  • diffusion layers results in the planar diffusion to the NEA surface. Thus, a decrease in the density of active electrodes could be more appropriate because of the decrease in electric double layer charging current and, as a consequence, the growth of the signal-to-noise ratio. A controlled decrease in the
PDF
Album
Full Research Paper
Published 30 Aug 2021

Colloidal particle aggregation: mechanism of assembly studied via constructal theory modeling

  • Scott C. Bukosky,
  • Sukrith Dev,
  • Monica S. Allen and
  • Jeffery W. Allen

Beilstein J. Nanotechnol. 2021, 12, 413–423, doi:10.3762/bjnano.12.33

Graphical Abstract
  • electrolyte ions arrange near the surface of the particles to form an electric double layer, thus screening the surface charge. The characteristic length or “thickness” of this double layer (which is a function of the ion concentration, I) is known as the Debye length, λD, while the surface charge is
PDF
Album
Full Research Paper
Published 06 May 2021

ZnO and MXenes as electrode materials for supercapacitor devices

  • Ameen Uddin Ammar,
  • Ipek Deniz Yildirim,
  • Feray Bakan and
  • Emre Erdem

Beilstein J. Nanotechnol. 2021, 12, 49–57, doi:10.3762/bjnano.12.4

Graphical Abstract
  • information has been obtained from the electrical analysis of bulk and nanoscale ZnO as electrode material in supercapacitor devices [7][10][11]. Bulk ZnO exhibits typical electric double-layer capacitor (EDLC) character. Using nanoscale ZnO, however, due to the effect of the surface defects, the device shows
  • size, the working mechanism of the supercapacitor changes from an electric double-layer capacitor (EDLC) to a Faradaic capacitor yielding higher specific capacitance values. Here, the supercapacitor device consists of four main components: ZnO (electrode 1), graphene foam (electrode 2), glass fiber as
PDF
Album
Review
Published 13 Jan 2021

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • ; electrochemistry; electrode material; electrospinning method; ordered and porous nanofibers; supercapacitor; Introduction As the technology sector develops, societal demands for energy storage devices also increases. Supercapacitors, including electric double-layer capacitors (EDLCs) and pseudo-capacitance
  • . All the CV curves were box-shaped, indicating that no visible redox peaks were observed during the reversible electrochemical process. The results also confirmed that all the samples had good electric double-layer capacitance over a range of 0–1.0 V [44]. Moreover, the OPCGCNF electrode had the most
  • electrochemical behavior [49]. EIS is one of the most accurate methods to analyze the dynamic process of diffusion in the electric double layer of an electrode. It is also commonly used to study the high energy storage capacity mechanism in electrodes. The general EIS spectrum is mainly composed of two parts: the
PDF
Album
Full Research Paper
Published 27 Aug 2020

Thermophoretic tweezers for single nanoparticle manipulation

  • Jošt Stergar and
  • Natan Osterman

Beilstein J. Nanotechnol. 2020, 11, 1126–1133, doi:10.3762/bjnano.11.97

Graphical Abstract
  • thermophoresis and fluid flow can be used to highly concentrate (trap) nanoparticles and molecules [24][25]. Suspended biological cells can be easily thermophoretically manipulated by harnessing the permittivity gradient in the electric double layer of the charged surface of the cell membrane [26]. Optical
PDF
Album
Supp Info
Full Research Paper
Published 30 Jul 2020

Effects of surface charge and boundary slip on time-periodic pressure-driven flow and electrokinetic energy conversion in a nanotube

  • Mandula Buren,
  • Yongjun Jian,
  • Yingchun Zhao,
  • Long Chang and
  • Quansheng Liu

Beilstein J. Nanotechnol. 2019, 10, 1628–1635, doi:10.3762/bjnano.10.158

Graphical Abstract
  • contact with an electrolyte solution, most of them acquire surface electric charge [2] due to ion adsorption and acid–base reactions [3]. The charged surface attracts counterions and repels co-ions in the nearby electrolyte solution, and hence an electric double layer (EDL) with net charge density forms
PDF
Album
Full Research Paper
Published 06 Aug 2019

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • , Figure S2. The CV curves demonstrate the rectangular shape pointing out the electric double-layer capacitance as the origin of capacitive behavior. The capacitance C in units of mF·cm−2 was calculated from the value of discharging current I, discharging time t, maximal voltage U and the area of the
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • function for rutile TiO2 [60], which was explained by the difference in the electric double layer formed on the surface. Since the origin of the double layer and the Smoluchowski effect is essentially the same, we think that the Smoluchowski effect may be suitable for explaining the change in surface
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries

  • Maike Schnucklake,
  • László Eifert,
  • Jonathan Schneider,
  • Roswitha Zeis and
  • Christina Roth

Beilstein J. Nanotechnol. 2019, 10, 1131–1139, doi:10.3762/bjnano.10.113

Graphical Abstract
  • solution resistance, which varies with the used electrode. The CPE is the constant-phase element which could be converted into the electric double-layer capacitance (CDL), whereas Rct represents the charge transfer resistance. Compared to the carbonized samples the diameters of the semicircles of the
PDF
Album
Full Research Paper
Published 28 May 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • carbon nanofiber/TiO2 (Cu/CuO/PCNF/TiO2) composite uniformly covered with TiO2 nanoparticles was synthesized by electrospinning and a simple hydrothermal technique. The synthesized composite exhibits a unique morphology and excellent supercapacitive performance, including both electric double layer and
  • , CNF, PCNF, Cu/PCNF and Cu/CuO/PCNF/TiO2 composite electrodes at a scan rate of 100 mV s−1 in the potential range (0–1 V). CNF, PCNF and Cu/PCNF samples show a quasi-rectangular box loop which represents electric double layer capacitance performance. Besides, the Cu/CuO/PCNF/TiO2 composite displays
  • weak and broad characteristic peaks, which result from the redox reactions, indicating the pseudo-capacitive behavior of TiO2. Notably, the composite material shows a combined electric double-layer capacitance and pseudo-capacitive behavior with a higher integrated area compared to all the other
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Advances in the fabrication of graphene transistors on flexible substrates

  • Gabriele Fisichella,
  • Stella Lo Verso,
  • Silvestra Di Marco,
  • Vincenzo Vinciguerra,
  • Emanuela Schilirò,
  • Salvatore Di Franco,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Amaia Zurutuza,
  • Alba Centeno,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2017, 8, 467–474, doi:10.3762/bjnano.8.50

Graphical Abstract
  • . Beside the fabrication simplicity, this configuration exploits electric double layer capacitance at the gate/solution interface and at the channel/solution interface, which can reach tens of µF/cm2 (depending on the ions concentration). However, for real applications, especially for a potential totally
PDF
Album
Full Research Paper
Published 20 Feb 2017

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2016

Electroviscous effect on fluid drag in a microchannel with large zeta potential

  • Dalei Jing and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2015, 6, 2207–2216, doi:10.3762/bjnano.6.226

Graphical Abstract
  • of electrostatic interaction, is formed next to the solid surface. Above that, the diffuse layer, a thin layer consisting of mobile ions, is formed because of loose electrostatic force and thermal diffusion. Both the adsorbed layer and the diffuse layer constitute an electric double layer (EDL) [5
PDF
Album
Full Research Paper
Published 24 Nov 2015

Kelvin probe force microscopy in liquid using electrochemical force microscopy

  • Liam Collins,
  • Stephen Jesse,
  • Jason I. Kilpatrick,
  • Alexander Tselev,
  • M. Baris Okatan,
  • Sergei V. Kalinin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2015, 6, 201–214, doi:10.3762/bjnano.6.19

Graphical Abstract
  • ), (τL = (L/2)2/D), which is much larger than the RC time for thin double layers (L >> 2λ) becomes increasingly important in the presence of Faradaic reactions or at large applied biases (Vdc >> 25 mV) for blocking electrodes where the electric double layer adsorbs neutral salt such that the bulk
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2015

Anticancer efficacy of a supramolecular complex of a 2-diethylaminoethyl–dextran–MMA graft copolymer and paclitaxel used as an artificial enzyme

  • Yasuhiko Onishi,
  • Yuki Eshita,
  • Rui-Cheng Ji,
  • Masayasu Onishi,
  • Takashi Kobayashi,
  • Masaaki Mizuno,
  • Jun Yoshida and
  • Naoji Kubota

Beilstein J. Nanotechnol. 2014, 5, 2293–2307, doi:10.3762/bjnano.5.238

Graphical Abstract
  • nm (Figure 4c), similar to that determined by dynamic light scattering. The ζ-potential of the outer layer of the particles, that is, outside of the electric double layer, was large (+36 mV; Figure 4b). However, the particle diameter of DDMC used was approximately 1200 nm because of its large
  • . The DDMC/PTX complex, with a diameter of 200–300 nm, may make stable polymeric micelles by both the hydrophobic force and hydrogen bond. The ζ-potential of the particles, outside of the electric double layer, was +36 mV, which helps to stabilize the dispersion of the DDMC/PTX complex. Considering the
PDF
Album
Review
Published 01 Dec 2014
Other Beilstein-Institut Open Science Activities